Ультразвуковой создатель. Когда и сколько? Ультразвук: шаг в медицину

Содержание

Ультразвук: шаг в медицину

Ультразвуковой создатель. Когда и сколько? Ультразвук: шаг в медицину

Сегодня сложно представить медицинскую диагностику без такого метода, как ультразвуковое исследование. Появившись в середине прошлого века, УЗИ-сканеры произвели настоящую революцию в медицине. Ультразвуковая диагностика продолжает активно развиваться.

На смену обычной двухмерной картинке приходят новые технологии. Недавно первый отечественный УЗИ-сканер экспертного класса производства «Калугаприбор» концерна «Автоматика» представил холдинг «Швабе», отвечающий за маркетинговую стратегию и продажи этого оборудования.

О том, что такое ультразвук, как появились УЗИ-сканеры и о новейшей технологии 5D в ультразвуковом исследовании – в нашем материале.

На ультразвуковой волне

Многие помнят определение звука из школьного учебника по физике: «Звуковыми волнами или просто звуком принято называть волны, воспринимаемые человеческим ухом». Таким образом, диапазон звуковых волн лежит в пределах от 20 Гц до 20 кГц. Звуки именно такой частоты способен слышать человек. Волны с частотой менее 20 Гц называются инфразвуком, а с частотой выше 20 кГц – ультразвуком.

В то время как человеку инфразвук и ультразвук недоступны, многие живые существа вполне нормально общаются в этих частотах.

Например, слон различает звук частотой от 1 Гц, а в верхнем пределе слышимости лидируют дельфины – максимум слухового восприятия у них доходит до 150 кГц. Кстати, ультразвук вполне способны уловить собаки и кошки.

Собака может слышать звук до 70 кГц, а верхний порог звукового диапазона у кошек равен 30 Гц.

Если для некоторых животных ультразвук – обычный способ общения, то людям о наличии в природе «невидимых» звуковых волн лишь приходилось догадываться. Опыты в этой сфере проводил еще Леонардо да Винчи в XV веке. Но открыл ультразвук в 1794 году итальянец Ладзаро Спалланцани, доказав, что летучая мышь с заткнутыми ушами перестает ориентироваться в пространстве.

УЗИ: физические основы

В XIX веке ультразвук произвел настоящий бум в научной среде, стали проводиться первые научные опыты. Например, в 1822 году, погрузив в Женевское озеро подводный колокол, удалось вычислить скорость звука в воде, что предопределило рождение гидроакустики.

Ближе к концу века, в 1890 году, учеными Пьером и Жаком Кюри было открыто физическое явление, которое вошло в основу ультразвукового исследования. Братья Кюри обнаружили пьезоэлектрический эффект. Заключается он в том, что при механической деформации некоторых кристаллов между их поверхностями возникает электрическое напряжение.

Пьер Кюри и кварцевый пьезоэлектрометр

На основе таких пьезокерамических материалов и создается главный компонент любого УЗИ-оборудования – преобразователь, или датчик, ультразвука.

На пьезоэлементы подается ток, который преобразуется в механические колебания с излучением ультразвуковых волн.

Пучок ультразвуковых волн распространяется в тканях организма, часть его отражается и возвращается обратно к пьезоэлементу. Основываясь на времени прохождения волны, оценивается расстояние.

Ультразвук в медицине: от лечения артрита до диагностики

В медицине ультразвук вначале использовали как метод лечения артритов, язвенной болезни желудка, астмы. Было это в начале 30-х годов прошлого века.

Считалось, что ультразвук обладает противовоспалительным, анальгезирующим, спазмолитическим действием, также усиливает проницаемость кожи.

Кстати, сегодня на этом основан фонофорез – метод физиотерапии, когда вместо обычного геля для УЗИ наносится лечебное вещество, а ультразвук помогает препарату глубже проникать в ткани.

Но свое основное применение в области медицины ультразвук нашел как метод диагностики. Основателем УЗИ-диагностики считается австрийский невролог, психиатр Дьюссик. В 1947 году он рассмотрел опухоль мозга, учитывая интенсивность, с которой ультразвуковая волна проходила сквозь череп пациента.

Настоящий прорыв в развитии ультразвуковой диагностики произошел в 1949 году, когда в США был создан первый аппарат для медицинского сканирования. Это устройство мало чем напоминало современные УЗИ-сканеры.

Оно представляло собой резервуар с жидкостью, в которую помещался пациент, вынужденный долгое время сидеть неподвижно, пока вокруг него передвигался сканер брюшной полости – сомаскоп. Но начало было положено.

УЗИ-сканеры совершенствовались очень стремительно, и к середине 60-х годов они стали приобретать привычный вид с мануальными датчиками.

Благодаря развитию микропроцессорной технологии в течение 1980-1990-х годов качество УЗИ намного улучшилось.

В это время ультразвуковую диагностику стали активно применять в различных областях медицины, оценив ее безвредность по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией.

Особо широкое применение ультразвук нашел в акушерстве и гинекологии. Уже в конце 1990-х годов во многих странах УЗИ стало стандартным исследованием, с помощью которого определяли срок беременности, выявляли пороки развития плода.

Взгляд изнутри: современные технологии в УЗИ

Сегодня отечественное здравоохранение закупает у зарубежных поставщиков порядка 3 тысяч УЗИ-сканеров в год. Дело в том, что до последнего времени такие устройства не выпускались серийно в России.

Эксперименты по применению ультразвука проводились и у нас в стране. В 1954 году в институте акустики Академии наук СССР даже появилось специализированное отделение, а в 1960-е годы был налажен выпуск отечественных УЗИ-сканеров. Но все они так и остались в статусе экспериментальных, не получили массового применения на практике, а к 1990-м годам и вовсе были замещены импортными аналогами.

В прошлом году Ростех в рамках программы импортозамещения наладил серийное производство российских УЗИ-сканеров – «РуСкан 50» и «РуСкан 60» на мощностях «Калугаприбор», входящего в концерн «Автоматика».

Они относятся к среднему и высокому классу, в них применяются новейшие технологии, такие как 3D/4D-изображение, а также эластография, то есть УЗИ с применением дополнительного фактора – давления, помогающего по характеру сокращения тканей определять патологические изменения.

Методы ультразвуковой диагностики продолжают активно развиваться. В этом году к производственной линейке Ростех добавил аппараты экспертного класса. Госкорпорация представила новинку на форуме БИОТЕХМЕД – «РуСкан 65М» в рамках экспозиции холдинга «Швабе», который реализует маркетинговую стратегию и осуществляет продажи изделия. Это первый отечественный УЗИ-сканер экспертного класса.

Что означает определение «экспертный» в классификации УЗИ-сканеров? Основной критерий – это разрешающая способность. Здесь используются высокоплотные датчики, способные различать мельчайшие детали структур.

Как упоминалось выше, каждый преобразователь имеет определенный набор пьезоэлементов. В аппаратах недорогого класса плотность этих элементов невысока.

Чем больше плотность, тем более точной и достоверной будет диагностика.

Второй, не менее важный критерий – какой набор программ заложен в данном оборудовании. Для того чтобы обеспечивать высокий уровень исследования, как правило, применяют очень дорогие пакеты программного обеспечения. Это позволяет визуализировать наиболее тонкие детали, изменения структур органов, сосудов и тканей. Кстати, в «РуСкан 65М» программное обеспечение – российского производства.

В новом изделии не только улучшено качество получаемого изображения, но и внедрены автоматизированные методы его обработки и анализа.

Так, визуальную оценку плода осуществляет программа реконструкции полупрозрачного 3D УЗИ Crystal Vue, которая за счет усиления визуализации одновременно наружных и внутренних структур в одном реконструированном трехмерном изображении позволяет увеличить информативность и диагностическую достоверность исследования за счет повышения контрастности и подсветки внутренних структур дополняет объемное изображение морфологической информацией об объекте исследования, повышая точность диагностики. Среди других технологий новинки – программа автоматического анализа образований молочной железы S-Detect Breast. Еще одна функция изделия – фантастическая 5D Heart Color, которая реконструирует девять проекций сердца плода с одновременным отображением кровотока. Полученные данные позволяют наиболее детально оценить сердце на предмет врожденных патологий.

Таким образом, в течение нескольких десятилетий применение УЗИ в медицине претерпело огромные изменения, особенно в акушерстве: от простого измерения размеров плода до детальной оценки его кровотока и внутренних органов. То, что было технически невозможно еще совсем недавно, сегодня превращается в привычную составляющую рутинного ультразвукового исследования.

Источник: https://rostec.ru/news/ultrazvuk-shag-v-meditsinu/

Понятие ультразвуковой терапии, методика, показания, ограничения к применению

Ультразвуковой создатель. Когда и сколько? Ультразвук: шаг в медицину

УЗТ, или ультразвуковая терапия, – это методика лечения при помощи ультразвука. УЗТ используют в физиотерапии для лечения и профилактики различных заболеваний.

Методику применяют в разных областях медицины, таких как ортопедия, хирургия, гинекология, офтальмология, дерматология, отоларингология, стоматология, педиатрия.

Ультразвуковая терапия позволяет снизить частоту обострений, а также сократить время восстановления после операции, острых патологий.

Исторические сведения

Ультразвуковые волны были открыты в 1899 году, их обнаружил К. Konig. Использовать на практике ультразвук пробовал русский инженер К. В. Шиловский и французский изобретатель Ланжевен в 1914-1918 годах. Исследования этих ученых привели к созданию излучателя ультразвука.

Он работал на основе пьезоэлектрического эффекта в соответствии с разработкой братьев Кюри. После этого был сделан прибор на основе магнитострикции. Со временем лучи, исходящие из аппарата, стали более направленными на конкретный объект.

Это позволило применять ультразвуковые волны в промышленности и медицине.

В медицине начали применять ультразвук после 1927 года. Толчком к использованию УЗТ стала работа ученых о биологическом воздействии ультразвука на организм. Есть мнение, что первым ультразвук начал применять Р. Польман. Он создал вибратор, излучающий ультразвуковые волны. Польман лечил УЗ-волнами ишиас, невралгию, миалгию. Результаты лечения были положительные.

К 1945 году УЗТ стали использовать в Германии, Западной Европе, США, Японии. В нашей стране методику начали применять только 1953 году. Ученый В. А. Плотников впервые попробовал лечить контрактуру Дюпюитрена ультразвуком. В 1955 году УЗ-волны стали использовать в терапии неврологических, суставных патологий, кожных болезней.

Начиная с 1961 года, начали производить отечественные ультразвуковые приборы. Производство их было серийным, что послужило толчком для развития ультразвуковой терапии. В 1986 году ученым из Белоруссии (Л. И.

Богданович, В. С. Улащик, А. А. Чиркин) была присуждена премия в области науки и техники. Методики ультразвуковой терапии в физиотерапии сегодня применяются очень широко для лечения различных заболеваний.

Характеристики ультразвуковых волн

Для физиотерапевтических процедур применяются УЗ-волны с частотой 800-3000 кГЦ. Для хирургических манипуляций частота колебаний составляет 20-100 кГЦ. Дозировка ультразвукового воздействия на организм зависит от интенсивности, продолжительности воздействия, а также типа генерации УЗ-волн (непрерывные, импульсные).

Интенсивность УЗ-волн:

  • Низкая (не более 0,4 Вт/см2).
  • Средняя (0,5-0,8 Вт/см2).
  • Высокая (0,9-1 Вт/см2).

При непрерывном воздействии ультразвука УЗ-волны без остановки направляются на ткани. Импульсное воздействие на органы представляет собой прерывающийся поток волн продолжительностью 2,4 или 10 мс.

Степень поглощения ультразвуковых волн зависит от акустики и частоты колебаний. Если ткани мягкие, то поглощение будет происходить на глубине 4-5 см при частоте 800-900 кГц, на глубине 1,5-2 см при частоте 3000 кГц.

Поглощение тканей по отношению к крови:

  • жировая − в 4 раза эффективнее;
  • мышечная − в 10 раз лучше;
  • костная – в 75 раз интенсивнее.

На месте перехода различных видов тканей интенсивность поглощения УЗ-волн значительно выше. В воздухе они сразу поглощаются, поэтому для проведения ультразвуковых физиопроцедур применяют различные среды.

Механизм воздействия УЗ-излучения

Выделяют несколько механизмов воздействия ультразвука на организм. К ним относятся: механический, тепловой, физико-химический, нервно-рефлекторный. Они являются первичными механизмами ультразвуковой терапии.

Механическое воздействие заключается в высокочастотных колебаниях, которые передаются тканям.

При этом происходит очень мелкая, незаметная человеку вибрация. Вибрационное воздействие приводит к увеличению кровообращения, повышению метаболизма в клетках.

Под действием вибрации в клетке снижается вязкость цитоплазматической жидкости. В тканях начинает разрыхляться соединительная ткань. В клетках ускоряется диффузия микроэлементов, стимулируется работа лизосом.

Из лизосом начинают выходить ферменты, которые повышают функцию белковых соединений. Эти процессы способствуют ускорению обмена веществ.

При подаче волн высокой частоты увеличивается проницаемость гистогематических барьеров.

Тепловой эффект подразумевает переход энергии УЗ-волн после поглощения тканями в тепло. Температура в них увеличивается на 1°С.

При этом ускоряется ферментативная активность внутри тканей, стимулируются биохимические реакции. Тепло образуется только на границах разных по плотности тканей.

Тепловую энергию больше поглощают органы с дефицитом кровотока, насыщенные коллагеновыми волокнами, а также нервная, костная ткань.

Физико-химическое воздействие вызвано механическим резонансом. Он увеличивает скорость движения молекулярных структур, повышается процесс распада молекул на ионы, появляются новые электрические поля.

Ускоряется окисление липидов, улучшается работа митохондриальных структур клеток, стимулируются физические и химические процессы в тканях организма. Активируются биологически активные вещества, такие как гистамин, серотонин.

Под действием УЗ-волн улучшается дыхание и окисление в органах. Все эти процессы ускоряют восстановление тканей.

Выделяют следующие фазы реакции организма:

ФазаХарактеристики
Фаза непосредственного воздействияСтимулируются все виды воздействия: механическое, физико-химическое, тепловое.
Фаза преобладания стресс-индуцирующей системыПродолжается на протяжении 4 часов после действия на ткани УЗ-волн.
Активация ПОЛСтимулируется синтез различных гормонов, биологически активных веществ. Повышается потоотделение, увеличивается образование мочи, уменьшается рН кожи, увеличивается сокращение стенок пищеварительного тракта. Активируется фагоцитоз, повышается иммунитет.
Фаза преобладания стресс-лимитирующей системыДействует на протяжении 4-12 часов. Уменьшается секреция кортизола, адренокортикотропного гормона, ускоряются метаболические и восстановительные процессы в органах.
Фаза усиления компенсаторно-приспособительных процессовДлительность составляет 12-24 часа. Увеличивается работа митохондриальных структур, стимулируется дыхательная функция клеток и тканей, пентозно-фосфатный обмен, повышается процесс деления клеточных структур, улучшается лимфоотток от органов, ускоряется приток крови.
Поздний следовой периодПродолжительность до 3 месяцев. Ускоряются все обменные процессы.

Терапевтический эффект УЗ-волн

УЗ-волны являются специфическим раздражителем при действии их на органы и ткани. Если воздействие ультразвука направлено на кожу, то формируется воспалительная реакция, покраснение кожи, увеличивается обмен веществ.

Во время ультразвуковой терапии (УЗТ) повышается количество тучных клеток, стимулируется функция камбиальных (стволовых) клеточных структур, повышается концентрация мукополисахаридов.

На фоне терапии в коже увеличивается функция железистого аппарата (сальные потовые железы), реакция кожи на раздражители становится более яркой.

Ткани нервной системы очень чувствительны к воздействию УЗ-волн. Ультразвук тормозит работу рецепторов синаптических щелей, что способствует снижению скорости передачи нервных импульсов. Улучшается общее состояние у пациентов с нарушениями вегетативной нервной системы.

Если УЗ-волны действуют на области желез, это ведет к стимуляции синтеза гормонов. Повышается иммунная активность.

При воздействии на сердечно-сосудистую систему ультразвук способен усиливать кровоток, немного понижать артериальное давление, повышать частоту сердечного ритма. Реологические свойства крови становятся лучше, повышается функция эритроцитов и лейкоцитов.

Показания и ограничения к назначению УЗТ

Процедура УЗТ имеет свои показания и ограничения.

ПоказанияОграничения
ЛОР-болезни (наличие аденоидов, ангины, фарингиты в стадии восстановления и другие болезни).Болезнь Шегрена.Терапия рубцовых изменений в послеоперационном периоде.Экзема, нейродерматит.Патологии нервной системы.Болезни суставного аппарата.Энурез у ребенка.Остеохондроз поясничной области.Поясничные радикулопатии, грыжи поясничного отдела.Артриты, артрозы (ревматоидные, а также с деформацией сустава).Невралгия тройничного нерва.Патологии глаз (катаракта, поражения роговицы, заболевания сетчатки).Сколиоз.Рубцовые контрактуры.Рубцы после ожоговой травмы.Последствия травм.Язвы при венозной недостаточности.Переломы костей (трубчатых).Патология простаты.Снижение функции яичников, бесплодие.Серозный мастит.Болезни матки, труб, яичников, спаечные образования малого таза.Гнойное отделяемое или абсцесс.Аритмия.Интоксикация.Тромбофлебит.Гипотония.Желтушный синдром.Тромбоз вен.Печеночная и почечная колика.Гипертиреоз, тиреотоксикоз.Астения.Вегетативная дисфункция.Гемофилия.Сахарный диабет (поздняя стадия).Хронический нефрит.Атеросклеротическое поражение сосудов.Туберкулезное поражение легочной ткани.Тяжелая гипертония.Злокачественный опухолевый процесс.Инфекционные болезни любой этиологии.Период вынашивания плода.Нарушение свертывающей способности крови.Невропатия лицевого нерва, невралгии.

Во время применения ультразвукового метода лечения не следует направлять излучатель на область сердца, мозг, точки роста костей у детей.

Техника проведения и аппараты УЗТ

При проведении ультразвукового физиолечения необходимо устранить гнойные очаги инфекции. Это можно сделать при помощи лекарственных препаратов и дезинфицирующих растворов. Также следует пролечить инфекционные заболевания вирусной или бактериальной природы.

Алгоритм физиопроцедуры следующий. Перед началом терапии кожу в месте контакта с аппаратной головкой излучателя необходимо смазать специальным веществом (вазелином, ланолином). Включают прибор, настраивают интенсивность волн, выставляют время. После этого излучатель устанавливают в необходимой области на поверхности кожи и начинают водить со скоростью 1 см в секунду.

На начальном этапе лечения можно обрабатывать не больше 1-2 полей за 1 сеанс. После двух дней лечения можно облучать до 3-4 полей. Продолжительность процедуры в первые двое суток не должна превышать 5 минут. Длительность последующих сеансов составляет до 15 минут. Детям процедуру рекомендуется проводить не более 10 минут.

При обработке ультразвуком конечностей (стопы, кисти, суставы, предплечье, голень) процедуру проводят в воде. Больной опускает руку или ногу в ванну, туда же погружают излучатель. Температурный режим для воды составляет 32-36°С. Длительность физиопроцедуры до 15 минут.

Во время терапии необходимо обеспечить безопасность медицинского персонала. Медсестра, которая держит в воде излучатель, должна надеть шерстяную рукавицу, а сверху на нее резиновую перчатку. Это защищает руку медработника от воздействия на руку ультразвукового воздействия. Варежка из шерсти имеет в порах воздух, который полностью поглощает УЗ-волны.

Виды аппаратов, используемые в учреждениях:

  • Для физиотерапии — УЗТ-1.01Ф.
  • В стоматологии — УЗТ-1.02С.
  • Для урологии — УЗТ-1.03У.
  • При болезнях глаз — УЗТ-1.04О.
  • Для женщин — УЗТ-3.01-Г.
  • В дерматологии — УЗТ-3.02-Д.
  • Для ребенка (облучение кожи) — УЗТ-3. 06.
  • Общего назначения — УЗТ-3. 05.

Сегодня производятся также следующие аппараты: «Гамма», «Барвинок», «Стержень», «Проктон-1», «Генитон», «ЛОР-3», «Sonostat», «Sonopuls», «ЕСО», «ECOSCAN». Для проведения ультразвуковой терапии дома можно приобрести ультразвуковой аппарат в магазинах медтехники. Для домашнего применения прекрасно подходит прибор «Ретон».

Перед тем как использовать ультразвуковой прибор нужно обязательно обратиться к доктору. Врач проведет полное обследование. Это очень важно, так как ультразвуковая терапия разрешена не всем пациентам.

Ультразвук у детей

Ультразвуковая терапия детям назначается только с 7-летнего возраста. В более раннем возрасте применять методику не следует. Терапию используют по тем же показаниям, что и для взрослых.

Подросткам-девочкам УЗТ применяют для лечения нарушения менструального цикла. Пациентам младшего возраста ультразвук показан при аденоидите и других ЛОР-патологиях. Ультразвуковое лечение детям также необходимо при энурезе. УЗ-волны улучшают состояние ткани мочевого пузыря, что помогает сформировать нормальный рефлекс на мочеиспускание, снизить реактивность мочевого пузыря.

Заключение

Ультразвуковая терапия – это относительно безопасный метод лечения. Его используют при различных заболеваниях. Применять методику лечения ультразвуком разрешено больницам, а также санаторно-курортным учреждениям. Для проведения УЗ-терапии обязательно нужно обратиться к доктору. Он определит длительность сеансов, интенсивность воздействия ультразвуковых волн, продолжительность курса.

Источник: http://phisioterapia.ru/vidy/drugie/ultrazvukovaya-terapiya-v-fizioterapii/

История развития ультразвуковой диагностики

Ультразвуковой создатель. Когда и сколько? Ультразвук: шаг в медицину

Современным пациентам сложно представить, что ещё не так давно медики обходились без такого метода диагностики, как ультразвуковое исследование. Ультразвук произвёл настоящую революцию в медицине, наделив врачей высокоинформативным и безопасным способом обследования пациентов.

Всего за каких-то полвека, которые насчитывает история ультразвуковой медицины, УЗИ стало главным помощником в диагностике большинства заболеваний. Как же появился и развивался этот метод?

Первые исследования ультразвуковых волн

О наличии в природе звуковых волн, не воспринимаемых человеком, люди догадывались давно, но открыл «невидимые лучи» итальянец Л. Спалланцани в 1794 г., доказав, что летучая мышь с заткнутыми ушами перестаёт ориентироваться в пространстве.

Первые научные опыты с ультразвуком стали проводиться еще в XIX в. Швейцарскому учёному Д. Колладену в 1822 г. удалось вычислить скорость звука в воде, погружая в Женевское озеро подводный колокол, и это событие предопределило рождение гидроакустики.

В 1880 году братья Кюри обнаружили пьезоэлектрический эффект, возникающий в кварцевом кристалле при механическом воздействии, а спустя 2 года был сгенерирован и обратный пьезоэффект. Это открытие легло в основу создания из пьезоэлементов преобразователя ультразвука – главного компонента любого УЗ-оборудования.

XX век: гидроакустика и металлодетекция

Начало XX века ознаменовалось развитием гидролокации – обнаружения объектов под водой при помощи эха. Созданием первых эхолотов мы обязаны сразу нескольким учёным из разных стран: австрийцу Э.

Бэму, англичанину Л. Ричардсону, американцу Р. Фессендену.

Благодаря гидролокаторам, сканировавшим морские глубины, стало возможным находить подводные препятствия, затонувшие корабли, а в годы I мировой войны – вражеские субмарины.

Еще одним ультразвуковым направлением стало создание в начале 30-х годов дефектоскопов для поиска изъянов в металлических конструкциях. Своё место УЗ-металлодетекция нашла в промышленности. Одним из основателей данного метода стал российский учёный С.Я. Соколов.

Методы эхолокации и металлодетекции заложили фундамент для первых экспериментов с живыми организмами, которые и проводились приборами промышленного назначения.

Ультразвук: шаг в медицину

Попытки поставить ультразвук на службу медицине относятся к 30-м годам XX века. Его свойства начали применять в физиотерапии артритов, экземы и ряда других заболеваний.

Опыты, начавшиеся в 40-е годы, были направлены уже на использование УЗ-волн в качестве инструмента диагностики новообразований. Успехов в исследованиях достиг венский психоневролог К.

Дюссик, который в 1947 году представил метод, названный гиперсонографией. Доктору Дюссику удалось обнаружить опухоль мозга, замеряя интенсивность, с которой ультразвуковая волна проходила сквозь череп пациента.

Именно этот учёный считается одним из родоначальников современной УЗ-диагностики.

Настоящий прорыв в развитии УЗД произошел в 1949 году, когда учёный из США Д. Хаури сконструировал первый аппарат для медицинского сканирования.

Это и последующие творения Хаури мало напоминали современные приборы.

Они представляли собой резервуар с жидкостью, в которую помещался пациент, вынужденный долгое время сидеть неподвижно, пока вокруг него передвигался сканер брюшной полости – сомаскоп.

Примерно в это же время американский хирург Дж. Уайлд создал портативный прибор с подвижным сканером, который выдавал в режиме реального времени визуальное изображение новообразований. Свой метод он назвал эхографией.

В последующие годы УЗИ-сканеры совершенствовались, и к середине 60-х годов они стали приобретать вид, близкий к современному оборудованию с мануальными датчиками. Тогда же западные врачи начали получать лицензии для использования в практике метода УЗД.

Узд в советской медицине

Эксперименты по применению ультразвука проводились и советскими учеными. В 1954 году в институте акустики Академии Наук СССР появилось специализированное отделение, возглавляемое профессором Л. Розенбергом.

Выпуск отечественных УЗИ-сканеров был налажен в 60-е годы в НИИ инструментов и оборудования. Учёные создали ряд моделей, предназначенных для применения в различных медицинских сферах: кардиологии, неврологии, офтальмологии. Но все они так и остались в статусе экспериментальных и не получили «места под солнцем» в практической медицине.

К тому моменту, когда советские врачи начали проявлять интерес к ультразвуковой диагностике, им уже приходилось пользоваться плодами достижений западной науки, поскольку к 90-м годам прошлого века отечественные разработки безнадёжно устарели и отстали от времени.

Современные технологии в УЗИ

Методы ультразвуковой диагностики продолжают активно развиваться. На смену обычной двухмерной визуализации приходят новые технологии, позволяющие получать объёмную картинку, «путешествовать» внутри полостей тела, воссоздавать внешний вид плода. Например:

  1. Трёхмерное УЗИ – создаёт 3D изображение в любом ракурсе.
  2. Эхоконтрастирование – УЗИ с применением внутривенного контраста, содержащего микроскопические газовые пузырьки. Отличается повышенной точностью диагностики.
  3. Тканевая, или 2-я гармоника (THI) – технология с улучшенным качеством и контрастностью изображения, показана пациентам с избыточным весом.
  4. Соноэластография – УЗИ с применением дополнительного фактора – давления, помогающего по характеру сокращения тканей определять патологические изменения.
  5. Ультразвуковая томография – методика, аналогичная по информативности КТ и МРТ, но при этом совершенно безвредная. Собирает объёмную информацию с последующей компьютерной обработкой изображения в трёх плоскостях.
  6. 4 D– узи – технология с возможностью навигации внутри сосудов и протоков, так называемый «взгляд изнутри». По качеству изображения похоже на эндоскопическое исследование.

Источник: http://www.rumex.ru/information/Istorija-razvitija-ul%27trazvukovoj-diagnostiki-123

Ультразвук – это что? Ультразвук в медицине. Лечение ультразвуком

Ультразвуковой создатель. Когда и сколько? Ультразвук: шаг в медицину

Несмотря на то что исследования ультразвуковых волн начались более ста лет назад, только последние полвека они стали широко использоваться в различных областях человеческой деятельности.

Это связано с активным развитием как квантового и нелинейного разделов акустики, так и квантовой электроники и физики твердого тела.

Сегодня ультразвук – это не просто обозначение высокочастотной области акустических волн, а целое научное направление в современной физике и биологии, с которым связаны промышленные, информационные и измерительные технологии, а также диагностические, хирургические и лечебные методы современной медицины.

Что это?

Все звуковые волны можно подразделить на слышимые человеком — это частоты от 16 до 18 тыс. Гц, и те, которые находятся вне диапазона людского восприятия — инфра- и ультразвук. Под инфразвуком понимаются волны аналогичные звуковым, но с частотами, ниже воспринимаемых человеческим ухом. Верхней границей инфразвуковой области считается 16 Гц, а нижней – 0,001 Гц.

Ультразвук – это тоже звуковые волны, но только их частота выше, чем может воспринять слуховой аппарат человека. Как правило, под ними понимают частоты от 20 до 106 кГц. Верхняя их граница зависит от среды, в которых эти волны распространяются.

Так, в газовой среде предел составляет 106 кГц, а в твердых телах и жидкостях он достигает отметки в 1010 кГц. В шуме дождя, ветра или водопада, грозовых разрядах и в шуршании перекатываемой морской волной гальки есть ультразвуковые компоненты.

Именно благодаря способности воспринимать и анализировать волны ультразвукового диапазона киты и дельфины, летучие мыши и ночные насекомые ориентируются в пространстве.

Немного истории

Первые исследования ультразвука (УЗ) были проведены еще в начале XIX века французским ученым Ф. Саваром (F. Savart), стремившимся выяснить верхний частотный предел слышимости человеческого слухового аппарата. В дальнейшем изучением ультразвуковых волн занимались такие известные ученые, как немец В. Вин, англичанин Ф. Гальтон, русский П. Лебедев с группой учеников.

В 1916 году физик из Франции П. Ланжевен, в сотрудничестве с русским ученым-эмигрантом Константином Шиловским, смог использовать кварц для приема и излучения ультразвука для морских измерений и обнаружения подводных объектов, что позволило исследователям создать первый гидролокатор, состоявший из излучателя и приемника ультразвука.

В 1925 году американец В. Пирс создал прибор, называемый сегодня интерферометром Пирса, измеряющий с большой точностью скорости и поглощение ультразвука в жидких и газовых средах. В 1928 году советский ученый С.

Соколов первым стал использовать ультразвуковые волны для обнаружения различных дефектов в твердых, в том числе и металлических, телах.

В послевоенные 50-60-е годы, на основе теоретических разработок коллектива советских ученых, возглавляемых Л. Д. Розенбергом, начинается широкое применение УЗ в различных промышленных и технологических областях.

В это же время, благодаря работам английских и американских ученых, а также исследованиям советских исследователей, таких как Р. В. Хохлова, В. А.

Красильникова и многих других, быстро развивается такая научная дисциплина, как нелинейная акустика.

Примерно тогда же предпринимаются первые попытки американцев использовать ультразвук в медицине.

Советский ученый Соколов еще в конце сороковых годов прошлого века разработал теоретическое описание прибора, предназначенного для визуализации непрозрачных объектов – «ультразвукового» микроскопа. Основываясь на этих работах, в середине 70-х годов специалисты из Стэндфордского университета создали прототип сканирующего акустического микроскопа.

Особенности

Имея общую природу, волны слышимого диапазона, равно как и ультразвуковые, подчиняются физическим законам. Но у ультразвука есть ряд особенностей, позволяющих широко его использовать в различных областях науки, медицины и техники:

1. Малая длина волны. Для наиболее низкого ультразвукового диапазона она не превышает нескольких сантиметров, обуславливая лучевой характер распространения сигнала. При этом волна фокусируется и распространяется линейными пучками.

2. Незначительный период колебаний, благодаря чему ультразвук можно излучать импульсно.

3. В различных средах ультразвуковые колебания с длиной волны, не превышающей 10 мм, обладают свойствами, аналогичными световым лучам, что позволяет фокусировать колебания, формировать направленное излучение, то есть не только посылать в нужном направлении энергию, но и сосредотачивать ее в необходимом объеме.

4. При малой амплитуде существует возможность получения высоких значений энергии колебаний, что позволяет создавать высокоэнергетические ультразвуковые поля и пучки без использования крупногабаритной аппаратуры.

5. Под воздействием ультразвука на среду возникает множество специфических физических, биологических, химических и медицинских эффектов, таких как:

  • диспергирование;
  • кавитация;
  • дегазация;
  • локальный нагрев;
  • дезинфекция и мн. др.

Виды

Все ультразвуковые частоты подразделяются на три вида:

  • УНЧ – низкие, с диапазоном от 20 до 100 кГц;
  • УСЧ – среднечастотные – от 0,1 до 10 МГц;
  • УЗВЧ – высокочастотные – от 10 до 1000 МГц.

Сегодня практическое использование ультразвука – это прежде всего применение волн малой интенсивности для измерений, контроля и исследований внутренней структуры различных материалов и изделий.

Высокочастотные используются для активного воздействия на различные вещества, что позволяет изменять их свойства и структуру.

Диагностика и лечение ультразвуком многих заболеваний (при помощи различных частот) является отдельным и активно развивающимся направлением современной медицины.

Где применяется?

В последние десятилетия ультразвуком интересуются не только научные теоретики, но и практики, все более активно внедряющие его в различные виды человеческой деятельности. Сегодня ультразвуковые установки используются для:

Получение информации о веществах и материалахМероприятияЧастота в кГц
отдо
Исследование состава и свойств веществтвердые тела10106
жидкости103105
газы10103
Контроль размеров и уровней10103
Гидролокация1100
Дефектоскопия100105
Медицинская диагностика103105
Воздействияна веществаПайка и металлизация10100
Сварка10100
Пластическое деформирование10100
Механическая обработка10100
Эмульгирование10104
Кристаллизация10100
Распыление10-100103-104
Коагуляция аэрозолей1100
Диспергирование10100
Очистка10100
Химические процессы10100
Воздействие на горение1100
Хирургия10 до 100103 до 104
Терапия103104
Обработка и управление сигналамиАкустоэлектронные преобразователи103107
Фильтры10105
Линии задержки103107
Акустооптические устройства100105

В современном мире ультразвук — это важный технологический инструмент в таких промышленных отраслях, как:

  • металлургическая;
  • химическая;
  • сельскохозяйственная;
  • текстильная;
  • пищевая;
  • фармакологическая;
  • машино- и приборостроительная;
  • нефтехимическая, перерабатывающая и другие.

Кроме этого, все более широко используется ультразвук в медицине. Вот об этом мы и поговорим в следующем разделе.

Использование в медицине

В современной практической медицине существует три основных направления использования ультразвука различных частот:

1. Диагностическое.

2. Терапевтическое.

3. Хирургическое.

Рассмотрим более подробно каждое из этих трех направлений.

Диагностика

Одним из наиболее современных и информативных методов медицинской диагностики является ультразвуковой. Его несомненные достоинства – это: минимальное воздействие на человеческие ткани и высокая информативность.

Как уже говорилось, ультразвук — это звуковые волны, распространяющиеся в однородной среде прямолинейно и с постоянной скоростью.

Если на их пути находятся области с различными акустическими плотностями, то часть колебаний отражается, а другая часть преломляется, продолжая при этом свое прямолинейное движение.

Таким образом, чем больше разница в плотности пограничных сред, тем больше ультразвуковых колебаний отражается. Современные методы ультразвукового исследования можно подразделить на локационные и просвечивающие.

Ультразвуковая локация

В процессе такого исследования регистрируются отраженные от границ сред с различными акустическими плотностями импульсы. При помощи перемещаемого датчика можно установить размер, расположение и форму исследуемого объекта.

Просвечивание

Этот метод основан на том, что различные ткани человеческого организма по-разному поглощают ультразвук.

Во время исследования какого-либо внутреннего органа в него направляют волну с определенной интенсивностью, после чего специальным датчиком регистрируют прошедший сигнал с обратной стороны.

Картина сканируемого объекта воспроизводится на основе изменения интенсивности сигнала на «входе» и «выходе». Полученная информация обрабатывается и преобразуется компьютером в виде эхограммы (кривой) или сонограммы – двухмерного изображения.

Допплер-метод

Это наиболее активно развивающийся метод диагностики, в котором используются как импульсный, так и непрерывный ультразвук. Допплерография широко применяется в акушерстве, кардиологии и онкологии, так как позволяет отслеживать даже самые незначительные изменения в капиллярах и небольших кровеносных сосудах.

Области применения диагностики

Сегодня ультразвуковые методы визуализации и измерений наиболее широко применяются в таких областях медицины, как:

  • акушерство;
  • офтальмология;
  • кардиология;
  • неврология новорожденных и младенцев;
  • исследование внутренних органов:

– ультразвук почек;

– печени;

– желчного пузыря и протоков;

– женской репродуктивной системы;

  • диагностика наружных и приповерхностных органов (щитовидной и молочных желез).

Использование в терапии

Основное лечебное воздействие ультразвука обусловлено его способностью проникать в человеческие ткани, разогревать и прогревать их, осуществлять микромассаж отдельных участков. УЗ может быть использован как для непосредственного, так и для косвенного воздействия на очаг боли.

Кроме того, при определенных условиях эти волны оказывают бактерицидное, противовоспалительное, обезболивающее и спазмолитическое действие. Используемый в терапевтических целях ультразвук условно подразделяют на колебания высокой и низкой интенсивности.

Именно волны низкой интенсивности наиболее широко применяется для стимуляции физиологических реакций или незначительного, не повреждающего нагрева. Лечение ультразвуком дало положительные результаты при таких заболеваниях, как:

  • артрозы;
  • артриты;
  • миалгии;
  • спондилиты;
  • невралгии;
  • варикозные и трофические язвы;
  • болезнь Бехтерева;
  • облитерирующие эндартерииты.

Проводятся исследования, во время которых используется ультразвук для лечения болезни Меньера, эмфиземы легких, язв двенадцатиперстной кишки и желудка, бронхиальной астмы, отосклероза.

Ультразвуковая хирургия

Современная хирургия, использующая ультразвуковые волны, подразделяется на два направления:

– избирательно разрушающая участки ткани особыми управляемыми ультразвуковыми волнами высокой интенсивности с частотами от 106 до 107 Гц;

– использующая хирургический инструмент с наложением ультразвуковых колебаний от 20 до 75 кГц.

Примером избирательной УЗ-хирургии может послужить дробление камней ультразвуком в почках. В процессе такой неинвазивной операции ультразвуковая волна воздействует на камень через кожу, то есть снаружи человеческого тела. К сожалению, подобный хирургический метод имеет ряд ограничений. Нельзя использовать дробление ультразвуком в следующих случаях:

– беременным женщинам на любом сроке;

– если диаметр камней более двух сантиметров;

– при любых инфекционных заболеваниях;

– при наличии болезней, нарушающих нормальную свертываемость крови;

– в случае тяжелых поражений костной ткани.

Несмотря на то что удаление ультразвуком почечных камней проводится без операционных разрезов, оно довольно болезненное и выполняется под общей или местной анестезией.

Хирургические ультразвуковые инструменты используются не только для менее болезненного рассечения костных и мягких тканей, но и для уменьшения кровопотерь. Обратим свой взор в сторону стоматологии.

Ультразвук камни зубные удаляет менее болезненно, да и все остальные манипуляции врача переносятся гораздо легче. Кроме того, в травматологической и ортопедической практике ультразвук используется для восстановления целостности сломанных костей.

Во время таких операций пространство между костными отломками заполняют специальным составом, состоящим из костной стружки и особой жидкой пластмассы, а затем воздействуют ультразвуком, благодаря чему все компоненты крепко соединяются.

Те, кто перенес хирургические вмешательства, в ходе которых использовался ультразвук, отзывы оставляют разные – как положительные, так и отрицательные. Однако следует отметить, что довольных пациентов все же больше!

Источник: https://FB.ru/article/170939/ultrazvuk---eto-chto-ultrazvuk-v-meditsine-lechenie-ultrazvukom

Ультразвуковая терапия: механизм действия, показания

Ультразвуковой создатель. Когда и сколько? Ультразвук: шаг в медицину

Ультразвуковая терапия – это метод лечения механическими колебаниями упругой среды в неслышном акустическом диапазоне. С лечебной целью его применяют в непрерывном или импульсном режимах с частотой 800-900 кГц.

Под воздействием энергии ультразвукового поля в подлежащих тканях образуется чередование зон сжатия и разрежения. Вследствие возникающего акустического давления, частицы среды колеблются относительно состояния покоя, передавая часть энергии
соседним частицам.

Аппаратура ультразвуковой терапии

В работе аппаратов используется обратный пьезоэлектрический эффект. Он основывается на способности некоторых кристаллических веществ (кварц, титанат бария и др.) деформироваться под действием электрического поля.

Если к поверхности пластинки с такой вещества приложить переменное электрическое напряжение, то в ней возникает переменная по знаку деформация: сжатие и расширение.

Деформация пластинки вызывает колебательные движения частиц касательной к ней среды, которое будет распространяться в форме ультразвуковой волны.

Методика ультразвуковой терапии

Положение во время процедуры должно быть удобным для больного и медицинской сестры (лежа, сидя, стоя) с учетом локализации патологического процесса. Различают следующие методики воздействия ультразвуком: контактную, когда излучатель непосредственно притрагивается к поверхности кожи, и дистанционную.

Каждую из них можно проводить подвижно (лабильная методика) или неподвижно (стабильная). Поскольку воздушная прослойка препятствует распространению ультразвуковых колебаний, используют контактные среды вазелин, глицерин, парафиновая масло и др.).

Поверхность излучателя должна плотно соприкасаться с кожей. При подводной методике участок, на который воздействуют ультразвуком, размещают в воде. Расстояние излучателя от поверхности кожи – 1-2 см.

Дозируют ультразвук по интенсивности излучения, выражающегося в ватах на 1 см квадратный поверхности излучателя.

Применяют слабую интенсивность (0,05-0,4 Вт/см квадратный), среднюю (0,5-0,8 Вт/см квадртаный) и сильную (0,9-1,2 Вт/см квадратный) в зависимости от заболевания и места воздействия.

Продолжительность процедуры зависит от размера поля (в среднем 150-200 см квадратных) и конечно составляет 5-7 мин. Назначают ежедневно или через день, на курс 10-15 процедур. При стабильной методике интенсивность ультразвука снижается до 0,05-0,2 Вт/см квадратного, продолжительность воздействия 3-5 мин.

Ультразвуковую терапию применяют в непрерывном режиме или импульсном, при котором действие более мягкое и тепловое воздействие менее выражено. Ультразвук проникает в ткань на глубину 4-5 см (при частоте 800-900 кГц).

С помощью ультразвука можно вводить в организм лекарственные вещества. Такая методика называется фонофорезом.

В этих случаях вместо вазелина используют соответствующие лекарственные мази или смеси (Преднизолон, Гидрокортизон, анальгин и др.). Действие ультразвука усиливается лекарственным препаратом.

У детей
ультразвуковая терапия может проводиться с 7 лет, однако доза и время воздействия уменьшаются.

Механизм действия ультразвуковой терапии

Механизм биологического действия ультразвука обусловлен тремя факторами: механическим, термическим и физико-химическим.

Механический фактор связан с действием фаз сжатия и разрежения вещества при прохождении ультразвуковых колебаний. Это приводит к микромассажу клеток и тканей по типу вибрационного массажа.

Термический фактор связан с образованием тепла за счет превращения механической энергии в тепловую.

Физико-химическое действие ультразвука обусловлено повышением проницаемости клеточных мембран, усилением процессов диффузии, активизации ферментативных систем, метаболизма аминокислот, изменения обмена веществ в организме.

Под влиянием ультразвука расширяются сосуды, ускоряется кровоток и лимфообращение, проявляется противовоспалительная (любая фаза воспаления, в том числе при гнойных процессах), рассасывающее действие.

Хорошо влияет ультразвук на соединительную ткань: предупреждает образование спаек и рубцов, размягчается грубоволокнистая ткань, повышается ее эластичность.

Ультразвук благоприятно действует на периферический отдел нервной системы и нервно-мышечный аппарат, повышается электровозбудимость периферических нервов. Ультразвук обладает десенсибилизирующим действием, усиливая выработка гормонов коры надпочечников.

Показания к ультразвуковой терапии:

  • деформирующий артроз,
  • остеохондроз позвоночника,
  • плечелопаточный периартрит,
  • травматические повреждения суставов,
  • периферических нервов,
  • радикулит,
  • невралгии и невриты,
  • язвенная болезнь,
  • бронхиальная астма,
  • спайки,
  • рубцы,
  • мастит,
  • гайморит,
  • хронический тонзиллит.

Противопоказание ультразвуковой терапии

Общие, а также артериальная гипотония, диенцефальный синдром, неврозы, сахарный диабет, нарушение мозгового кровообращения.

Источник: https://medjournal.info/ultrazvukovaya-terapiya-mekhanizm-dejstviya-pokazaniya/

История появления УЗИ в медицине

Ультразвуковой создатель. Когда и сколько? Ультразвук: шаг в медицину

УЗИ — ультразвуковое исследование — метод диагностики, который на сегодняшний день является одним из основных инструментов современной медицины и применяется практически во всех её областях.

Будучи довольно молодым методом, УЗИ диагностика совершила настоящий переворот, обеспечив врачей мощным, быстрым, безопасным, информативным и достоверным инструментом обследования пациентов для выявления широкого круга заболеваний.

Но как ультразвук попал в арсенал медиков и что этому предшествовало? Об этом и расскажет этот небольшой обзор.

Открытие ультразвука и пьезоэлектриков

С давних времён учёные-исследователи в области физики, математики, материаловедения, позднее в электронике, пытались проникнуть за грань материального.

Ещё Леонардо да Винчи в XV веке погружал в жидкость трубку, пытаясь определить движение и скорость движущихся навстречу друг другу кораблей.

Так со временем появился ультразвук, которым стали пользоваться во многих сферах, с том числе в медицине, сначала в диагностике, а затем и в лечении.

Что же такое ультразвук? Ультразвук – это упругие колебания с частотами выше диапазона слышимости человека (20 кГц), распространяющиеся в виде волны в газах, жидкостях и твёрдых телах или образующее в ограниченных областях этих сред стоячие волны.

В XIX веке ультразвук произвёл настоящий бум в среде исследователей, объединив усилия учёных различных областей.

Например, швейцарский физик Жан – Даниел и математик Чарльз Штурм, занимаясь проблемами скорости звука в воде, внесли немалый вклад в развитие гидролокатора.

Учёный Калладон в результате своих экспериментов сумел определить скорость звука в воде. Благодаря этому родилась гидроакустика.

В конце XIX века, в 1877 году, Джон Уильям Струтт разработал теорию звука, которая и явилась основой науки об ультразвуке. Тремя годами позже открытие учёных Пьера и Жака Кюри привело к развитию ультразвукового преобразователя. Их открытие пьезоэлектриков стало основой современного ультразвукового оборудования.

В XX веке исследования в области ультразвука были продолжены. Благодаря «сверхзвуковому рефлектоскопу», разработанному в первой половине 20 века учёными Спроулом, Фаярстоуном и Спер стало возможным обнаруживать дефекты в металле, что нашло своё применение в промышленности.

Во второй половине XX века учёные – исследователи Генри Хугес, Кельвин, Боттомли и Баярд изготовили металлический дефектоскоп, а Том Броун с Яном Дональдом разработали первую в мире контактную ультразвуковую машину. Кроме этого, Яну Дональду принадлежит заслуга в исследовании клинических областей использования ультразвука.

Гидролокация

Вначале следует пояснить, что же такое гидролокатор. Гидролокатор – это прибор, который обнаруживает объекты, находящиеся под водой, при помощи эха.

Гидролокационная установка обладает приёмником, который принимает эхо на себя и информирует о предметах, находящихся под водой. Таким образом, благодаря учёным Элру Бэму (Австрия-1912г.), Левису Ричардсону (Англия – 1912 г.), Реджинальду Фессендену (США – 1914 г.

), создавшим в разное время и в разных странах эхолоты – гидролокаторы, стало возможным обнаружение айсбергов, что спасло тысячи человеческих жизней.

Гидролокационные установки нашли своё применение в военной промышленности (например, для обнаружения подводных лодок), в речной и морской (для определения возможных препятствий, затонувших кораблей), в тяжёлой промышленности (для поисков залежей нефти) и т.д.

Выдающееся открытие в 1928 году в области ультразвукового дефектоскопа принесло признание русскому учёному С. Я. Соколову.

Первые опыты применения ультразвука в области медицины

Широкое применение ультразвук нашёл в области медицины как метод диагностики — УЗИ. По словам Яна Дональда, сказанным в 70-десятые годы, «медицинский гидролокатор весьма внезапно вырос и достиг совершеннолетия; фактически, его всплеск роста в пределах последних нескольких лет был почти взрывом».

А начиналось это в далёкие пятидесятые годы 20 века.

Американцы Холмс и Хоур, используя достижения в технических областях, первыми сканировали человека, погружая его в бак, изготовленный из башни от самолёта В29, с дегазованной водой, пропуская ультразвук вокруг оси 360 градусов, что и стало первой томограммой.

Открытие Йаффе привело к тому, что Тернер из Лондона, Лекселл из Швеции и Казнер из Германии использовали ультразвук для энцифалографии срединной линии головного мозга в целях обнаружения гематом, полученных в результате травмирования.

Инге Эдлер и Карл Хеллмут Герц стали пионерами в области эхокардиографии (ультразвуковой кардиографии).

В 1955 году Яном Дональдом и доктором Барром были проведены первые исследования опухолей, твёрдой и кистозной. При поддержке Яна Дональда инженер Том Браун создал прибор Mark 4, который дифференцировал твёрдые и кистозные опухоли, чем сумел спасти человеческую жизнь.

Интерес к УЗИ и ультразвуковой технике постоянно растёт, так как он проникает во все сферы человеческой деятельности.

Источник: https://uzist.ru/istoriya-uzi/istoriya-uzi.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.