Простейшие функции их свойства. Основные свойства функции

Основные элементарные функции: их свойства и графики

Простейшие функции их свойства. Основные свойства функции

Основные элементарные функции, присущие им свойства и соответствующие графики – одни из азов математических знаний, схожих по степени важности с таблицей умножения. Элементарные функции являются базой, опорой для изучения всех теоретических вопросов.

Статья ниже дает ключевой материал по теме основных элементарных функций. Мы введем термины, дадим им определения; подробно изучим каждый вид элементарных функций, разберем их свойства.

Выделяют следующие виды основных элементарных функций:

Определение 1

  • постоянная функция (константа);
  • корень n-ой степени;
  • степенная функция;
  • показательная функция;
  • логарифмическая функция;
  • тригонометрические функции;
  • братные тригонометрические функции.

Постоянная функция

Постоянная функция определяется формулой: y=C (C – некое действительное число) и имеет также название: константа. Данная функция определяет соответствие любому действительному значению независимой переменной x одного и того же значения переменной y – значение C.

График константы – это прямая, которая параллельна оси абсцисс и проходит через точку, имеющую координаты (0, С). Для наглядности приведем графики постоянных функций y=5, y=-2, y=3, y=3 (на чертеже обозначено черным, красным и синим цветами соответственно).

Определение 2

Свойства постоянных функций:

  • область определения – все множество действительных чисел;
  • постоянная функция – четная;
  • область значений – множество, составленное из единственного числа C;
  • постоянная функция является невозрастающей и неубывающей;
  • постоянная функция – прямая линия, о выпуклости или вогнутости здесь речи быть не может;
  • асимптоты отсутствуют;
  • точка прохождения функции на координатной плоскости – (0; С).

Корень n-й степени

Данная элементарная функция определяется формулой y=xn (n – натуральное число больше единицы).

Рассмотрим две вариации функции.

  1. Корень n-й степени, n – четное число

Для наглядности укажем чертеж , на котором изображены графики таких функций: y=x, y=x4 и y=x8. Эти функции отмечены цветом: черный, красный и синий соответственно.

Похожий вид у графиков функции четной степени при иных значениях показателя.

Определение 3

Свойства функции корень n-ой степени, n – четное число

  • область определения – множество всех неотрицательных действительных чисел [0, +∞);
  • когда x=0, функцияy=xn имеет значение, равное нулю;
  • данная функция- функция общего вида (не является ни четной, ни нечетной);
  • область значений: [0, +∞);
  • данная функция y=xn при четных показателях корня возрастает на всей области определения;
  • функция обладает выпуклостью с направлением вверх на всей области определения;
  • отсутствуют точки перегиба;
  • асимптоты отсутствуют;
  • график функции при четных n проходит через точки (0; 0) и (1; 1).
  1. Корень n-й степени, n – нечетное число

Такая функция определена на всем множестве действительных чисел. Для наглядности рассмотрим графики функций y=x3, y=x5 и x9. На чертеже они обозначены цветами: черный, красный и синий цвета кривых соответственно.

Иные нечетные значения показателя корня функции y=xn дадут график аналогичного вида.

Определение 4

Свойства функции корень n-ой степени, n – нечетное число

  • область определения – множество всех действительных чисел;
  • данная функция – нечетная;
  • область значений – множество всех действительных чисел;
  • функция y=xn при нечетных показателях корня возрастает на всей области определения;
  • функция имеет вогнутость на промежутке (-∞; 0] и выпуклость на промежутке [0, +∞);
  • точка перегиба имеет координаты (0; 0);
  • асимптоты отсутствуют;
  • график функции при нечетных n проходит через точки (-1; -1), (0; 0) и (1; 1).

Степенная функция

Определение 5

Степенная функция определяется формулой y=xa.

Вид графиков и свойства функции зависят от значения показателя степени.

  • когда степенная функция имеет целый показатель a, то вид графика степенной функции и ее свойства зависят от того, четный или нечетный показатель степени, а также того, какой знак имеет показатель степени. Рассмотрим все эти частные случаи подробнее ниже;
  • показатель степени  может быть дробным или иррациональным – в зависимости от этого также варьируется вид графиков и свойства функции. Мы разберем частные случаи, задав несколько условий: 0

Источник: https://Zaochnik.com/spravochnik/matematika/funktsii/osnovnye-elementarnye-funktsii/

Простейшие свойства функции. Понятие функции. Основные свойства функции

Простейшие функции их свойства. Основные свойства функции

Функция y=x2 называется квадратичной функцией. Графиком квадратичной функции является парабола. Общий вид параболы представлен на рисунке ниже.

Квадратичная функция

Рис 1. Общий вид параболы

Как видно из графика, он симметричен относительно оси Оу. Ось Оу называется осью симметрии параболы. Это значит, что если провести на графике прямую параллельную оси Ох выше это оси. То она пересечет параболу в двух точках. Расстояние от этих точек до оси Оу будет одинаковым.

Ось симметрии разделяет график параболы как бы на две части. Эти части называются ветвями параболы. А точка параболы которая лежит на оси симметрии называется вершиной параболы. То есть ось симметрии проходит через вершину параболы. Координаты этой точки (0;0).

Основные свойства квадратичной функции

1. При х =0, у=0, и у>0 при х0

2. Минимальное значение квадратичная функция достигает в своей вершине. Ymin при x=0; Следует также заметить, что максимального значения у функции не существует.

3. Функция убывает на промежутке (-∞;0] и возрастает на промежутке ; неравенству af(x 1), и убывает, если f(x 2)x 1 выполняется неравенство f(x 2)≥f(x 1) (f(x 2)≤f(x 1)).

Возрастающие и убывающие функции, а также невозрастающие и неубывающие функции называют монотонными.

3 ОграниченностьФункция y=f(x) называется ограниченной на промежутке X, если существует такое положительное число M>0, что |f(x)|≤M для любого xÎX. В противном случае функция называется неограниченной на X.

4 ПериодичностьФункция y=f(x) называется периодической с периодом T≠0, если для любых x из области определения функции f(x+T)=f(x). В дальнейшем под периодом будем понимать наименьший положительный период функции.

Функция называется явной, если она задана формулой вида y=f(x). Если функция задана уравнением F(x, y)=0, не разрешенным относительно зависимой переменной y, то ее называют неявной.

Пусть y=f(x) есть функция от независимой переменной , определенная на множестве X с областью значений Y. Поставим в соответствие каждому yÎY единственное значение xÎX, при котором f(x)=y.

Тогда полученная функция x=φ(y), определенная на множестве Y с областью значений X, называется обратной и обозначается y=f –1 (x).

Графики взаимно обратных функций симметричны относительно биссектрисы первой и третьей координатных четвертей .

Пусть функция y=f(u) есть функция переменной u, определенной на множестве U с областью значений Y, а переменная u в свою очередь является функцией u=φ(x), определенной на множестве X с областью значений U. Тогда заданная на множестве X функция y=f(φ(x)) называется сложной функцией (композицией функций, суперпозицией функций, функцией от функции).

Элементарные функции

К основным элементарным функциям относят:

  • степенную функцию y=x n; y=x – n и y=x 1/ n;
  • показательную функцию y=a x;
  • логарифмическую функцию y=log a x;
  • тригонометрические функции y=sin x, y=cos x, y=tg x и y=ctg x;
  • обратные тригонометрические функции y= arcsin x, y=arccos x, y=arctg x и y=arcctg x.

Из основных элементарных функций новые функции могут быть получены при помощи алгебраических действий и суперпозицией функций.

Функции, построенные из основных элементарных функций с помощью конечного числа алгебраических действий и конечного числа операций суперпозиции, называются элементарными.

Алгебраической называется функция, в которой над аргументом проводится конечное число алгебраических действий. К числу алгебраических функций относятся:

· целая рациональная функция (многочлен или полином)

· дробно-рациональная функция (отношение двух многочленов)

· иррациональная функция (если в составе операций над аргументом имеется извлечение корня).

Всякая неалгебраическая функция называется трансцендентной. К числу трансцендентных функций относятся показательная, логарифмическая, тригонометрические, обратные тригонометрические функции.

Русская гимназия

КОНСПЕКТ

Выполнил

ученик 10“Ф” класса Бурмистров Сергей

Руководитель

учитель Математики

Юлина О.А.

Нижний Новгород

Функция и её свойства

Функция-зависимость переменной у от переменной x,если каждому значению х соответствует единственное значение у.

Переменная х-независимая переменная или аргумент.

Переменная у- зависимая переменная

Значение функции-значение у, соответствующее заданному значению х.

Область определения функции- все значения, которые принимает независимая переменная.

Область значений функции (множество значений)- все значения, которые принимает функция.

Функция является четной- если для любого хf(x)=f(-x)

Функция является нечетной-если для любого х из области определения функции выполняется равенство f(-x)=-f(x)

Возрастающая функция-если для любых х 1и х 2,таких, что х 10, то функция убывает на промежутке (0;+¥) и на промежутке (-¥;0). Если k

Графиком функции является гипербола.

5)Функцияy=x 2

Свойства функции y=x 2:

2. y=x 2четная функция

3. На промежутке функция убывает

Графиком функции является парабола.

6)Функцияy=x 3

Свойства функции y=x 3:

1. Область определения- вся числовая прямая

2. y=x 3нечетная функция

3. Функция возрастает на всей числовой прямой

Графиком функции является кубическая парабола

7)Степенная функция с натуральным показателем- функция, заданная формулой y=x n, где n– натуральное число. При n=1 получаем функцию y=x, ее свойства рассмотрены в п.2. При n=2;3 получаем функции y=x 2; y=x 3. Их свойства рассмотрены выше.

Пусть n- произвольное четное число, большее двух: 4,6,8… В этом случае функция y=x nобладает теми же свойствами, что и функция y=x 2.

График функции напоминает параболу y=x 2, только ветви графика при |х|>1 тем круче идут вверх, чем больше n, а при |х|

Пусть n- произвольное нечетное число, большее трех: 5,7,9…

В этом случае функция y=x nобладает теми же свойствами, что и функция y=x 3. График функции напоминает кубическую параболу.

8)Степенная функция с целым отрицательным показателем- функция, заданная формулой y=x -n,где n– натуральное число. При n=1 получаем y=1/х, свойства этой функции рассмотрены в п.4.

Пусть n- нечетное число, большее единицы: 3,5,7… В этом случае функция y=x -nобладает в основном теми же свойствами, что и функция y=1/х.

Пусть n- четное число, например n=2.

Свойства функции y=x -2:

1. Функция определена при всех x¹0

2. y=x -2 –четная функция

3. Функция убывает на (0;+¥) и возрастает на (-¥;0).

Теми же свойствами обладают любые функции при четном n, большем двух.

9)Функцияy=Öх

Свойства функции y=Öх:

1. Область определения – луч .

Областью значений функции явл. промежуток [ 1; 3].

1. При x = -3, x =- 1, x = 1,5, х=4,5 значение функции равно нулю.

Значение аргумента, при котором значение функции равно нулю, называют нулем функции.

//т.е. для данной функции числа -3;-1;1,5; 4,5 являются нулями.

2. На промежутках [ 4,5; 3) и (1; 1,5) и (4,5;5,5] график функции f расположен над осью абсцисс, а на промежутках (-3; -1) и (1,5; 4,5) под осью абсцисс, это объясняется так -на промежутках [ 4,5; 3) и (1; 1,5) и (4,5;5,5] функция принимает положительные значения, а на промежутках (-3; -1) и (1,5; 4,5) отрицательные.

Каждый из указанных промежутков (там где функция принимает значения одного и того же знака) называют промежутком знакопостоянства функции f.//т.е. например, если взять промежуток (0; 3), то он не является промежутком знакопостоянства данной функции.

В математике принято при поиске промежутков знакопостоянства функции указывать промежутки максимальной длины. //Т.е. промежуток (2; 3) является промежутком знакопостоянства функции f, но в ответ следует включить промежуток [ 4,5; 3), содержащий промежуток (2; 3).

3. Если перемещаться по оси абсцисс от 4,5 до 2, то можно заметить, что график функции идет вниз, то есть значения функции уменьшаются. //В математике принято говорить, что на промежутке [ 4,5; 2] функция убывает.

С увеличением x от 2 до 0 график функции идет вверх, т.е. значения функции увеличиваются. //В математике принято говорить, что на промежутке [ 2; 0] функция возрастает.

Функцию f называют , если для любых двух значений аргумента x1 и x2 из этого промежутка таких, что x2 > x1, выполняется неравенство f (x2) > f (x1). // или Функцию называют возрастающей на некотором промежутке, если для любых значений аргумента из этого промежутка большему значению аргумента соответствует большее значение функции.//т.е. чем больше х, тем больше у.

Функцию f называют убывающей на некотором промежутке, если для любых двух значений аргумента x1 и x2 из этого промежутка таких, что x2 > x1, выполняется неравенство f(x2)убывающей на некотором промежутке, если для любых значений аргумента из этого промежутка большему значению аргумента соответствует меньшее значение функции. //т.е. чем больше х, тем меньше у.

Если функция возрастает на всей области определения, то ее называют возрастающей.

Если функция убывает на всей области определения, то ее называют убывающей.

Пример 1. график возрастающей и убывающей функций соотвественно.

Пример 2.

Определить явл. ли линейная функция f (x) = 3x + 5 возрастающей или убывающей?

Доказательство. Воспрользуемся определениями. Пусть х1 и x2 произвольные значения аргумента, причем x1 < x2., например х1=1, х2=7

Источник: https://www.flgso.ru/prosteishie-svoistva-funkcii-ponyatie-funkcii-osnovnye-svoistva-funkcii.html

Основные элементарные функции и их свойства

Простейшие функции их свойства. Основные свойства функции

Раздел содержит справочный материал по основным элементарным функциям и их свойствам. Приводится классификация элементарных функций. Ниже даны ссылки на подразделы, в которых рассматриваются свойства конкретных функций – графики, формулы, производные, первообразные (интегралы), разложения в ряды, выражения через комплексные переменные.

Страницы со справочным материалом по элементарным функциямКлассификация элементарных функцийОбзор основных элементарных функцийТрансцендентные функции Корни квадратного уравнения
    Теорема Виета
    Решение онлайн
Решение кубических уравнений
    Формула Кардано
    Формула Виета
    Примеры
    Онлайн калькулятор
Степенная функция и корни, формулы
    Степенная функция, ее свойства и графики
Показательная функция
Логарифм – свойства, формулы, график
Экспонента, е в степени х
Натуральный логарифм, функция ln x
Синус, косинус
Тангенс, котангенс
Обратные тригонометрические функции, их графики и формулы
    Арксинус, арккосинус
    Арктангенс, арккотангенс
    Вывод формул обратных тригонометрических функций
    Выражения обратных тригонометрических функций от комплексного переменного через логарифмы
Гиперболические
Обратные гиперболические

Основные виды неравенств и их свойства

Алгебраическая функция – это функция, которая удовлетворяет уравнению:
,
где – многочлен от зависимой переменной y и независимой переменной x. Его можно записать в виде:
,
где – многочлены.

Алгебраические функции делятся на многочлены (целые рациональные функции), рациональные функции и иррациональные функции.

Целая рациональная функция, которая также называется многочленом или полиномом, получается из переменной x и конечного числа чисел с помощью арифметических действий сложения (вычитания) и умножения. После раскрытия скобок, многочлен приводится к каноническому виду:
.

Дробно-рациональная функция, или просто рациональная функция, получается из переменной x и конечного числа чисел с помощью арифметических действий сложения (вычитания), умножения и деления. Рациональную функцию можно привести к виду
,
где и – многочлены.

Иррациональная функция – это алгебраическая функция, не являющаяся рациональной. Как правило, под иррациональной функцией понимают корни и их композиции с рациональными функциями. Корень степени n определяется как решение уравнения
. Он обозначается так:

.

Трансцендентными функциями называются неалгебраические функции. Это показательные, тригонометрические, гиперболические и обратные к ним функции.

Обзор основных элементарных функций

Все элементарные функции можно представить в виде конечного числа операций сложения, вычитания, умножения и деления, произведенных над выражением вида:
z t.
Обратные функции могут выражаться также через логарифмы. Ниже перечислены основные элементарные функции.

Степенная функция:
y(x) = x p,
где p – показатель степени. Она зависит от основания степени x. Обратной к степенной функции является также степенная функция:

.

При целом неотрицательном значении показателя p она является многочленом. При целом значении p – рациональной функцией. При рациональном значении – иррациональной функцией.

Трансцендентные функции

Показательная функция:
y(x) = a x,
где a – основание степени. Она зависит от показателя степени x.
Обратная функция – логарифм по основанию a:
x = log a y.

Экспонента, е в степени х:
y(x) = e x, Это показательная функция, производная которой равна самой функции:

.

Основанием степени экспоненты является число e:
≈ 2,718281828459045….
Обратная функция – натуральный логарифм – логарифм по основанию числа e:
x = ln y ≡ log e y.

Тригонометрические функции:
Синус:   ;
Косинус:   ;
Тангенс:   ;
Котангенс:   ;
Здесь i – мнимая единица, i 2 = –1.

Обратные тригонометрические функции:
Арксинус:   x = arcsin y,   ;
Арккосинус:   x = arccos y,   ;
Арктангенс:   x = arctg y,   ;
Арккотангенс:   x = arcctg y,   .

Гиперболические функции:
Гиперболический синус:   ;
Гиперболический косинус:   ;
Гиперболический тангенс:   ;
Гиперболический котангенс:   .

Обратные гиперболические функции:
Ареасинус:   ;
Ареакосинус:   ;
Ареатангенс:   ;
Ареакотангенс:   .

Источник: https://1cov-edu.ru/mat_analiz/funktsii/

Функции и графики

Простейшие функции их свойства. Основные свойства функции

К оглавлению…

Длина отрезка на координатной оси находится по формуле:

Длина отрезка на координатной плоскости ищется по формуле:

Для нахождения длины отрезка в трёхмерной системе координат используется следующая формула:

Координаты середины отрезка (для координатной оси используется только первая формула, для координатной плоскости – первые две формулы, для трехмерной системы координат – все три формулы) вычисляются по формулам:

Функция – это соответствие вида y = f(x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой переменной величины x (аргумента или независимой переменной) соответствует определенное значение другой переменной величины, y (зависимой переменной, иногда это значение просто называют значением функции). Обратите внимание, что функция подразумевает, что одному значению аргумента х может соответствовать только одно значение зависимой переменной у. При этом одно и то же значение у может быть получено при различных х.

Область определения функции – это все значения независимой переменной (аргумента функции, обычно это х), при которых функция определена, т.е. ее значение существует.

Обозначается область определения D(y). По большому счету Вы уже знакомы с этим понятием.

 Область определения функции по другому называется областью допустимых значений, или ОДЗ, которую Вы давно умеете находить.

Область значений функции – это все возможные значения зависимой переменной данной функции. Обозначается Е(у).

Функция возрастает на промежутке, на котором большему значению аргумента соответствует большее значение функции. Функция убывает на промежутке, на котором большему значению аргумента соответствует меньшее значение функции.

Промежутки знакопостоянства функции – это промежутки независимой переменной, на которых зависимая переменная сохраняет свой положительный или отрицательный знак.

Нули функции – это такие значения аргумента, при которых величина функции равна нулю. В этих точках график функции пересекает ось абсцисс (ось ОХ). Очень часто необходимость найти нули функции означает необходимость просто решить уравнение. Также часто необходимость найти промежутки знакопостоянства означает необходимость просто решить неравенство.

Функцию y = f(x) называют четной, если она определена на симметричном множестве и для любого х из области определения выполняется равенство:

Это означает, что для любых противоположных значений аргумента, значения четной функции равны. График чётной функции всегда симметричен относительно оси ординат ОУ.

Функцию y = f(x) называют нечетной, если она определена на симметричном множестве и для любого х из области определения выполняется равенство:

Это означает, что для любых противоположных значений аргумента, значения нечетной функции также противоположны. График нечётной функции всегда симметричен относительно начала координат.

Сумма корней чётной и нечетной функций (точек пересечения оси абсцисс ОХ) всегда равна нулю, т.к. на каждый положительный корень х приходится отрицательный корень –х.

Важно отметить: некоторая функция не обязательно должна быть четной либо нечетной. Существует множество функций не являющихся ни четными ни нечетными. Такие функции называются функциями общего вида, и для них не выполняется ни одно из равенств или свойств приведенных выше.

График линейной функции

К оглавлению…

Линейной функцией называют функцию, которую можно задать формулой:

График линейной функции представляет из себя прямую и в общем случае выглядит следующим образом (приведен пример для случая когда k > 0, в этом случае функция возрастающая; для случая k < 0 функция будет убывающей, т.е. прямая будет наклонена в другую сторону - слева направо):

График квадратичной функции (Парабола)

К оглавлению…

График параболы задается квадратичной функцией:

Квадратичная функция, как и любая другая функция, пересекает ось ОХ в точках являющихся её корнями: (x1; 0) и (x2; 0).

Если корней нет, значит квадратичная функция ось ОХ не пересекает, если корень один, значит в этой точке (x0; 0) квадратичная функция только касается оси ОХ, но не пересекает её. Квадратичная функция всегда пересекает ось OY в точке с координатами: (0; c).

График квадратичной функции (парабола) может выглядеть следующим образом (на рисунке примеры, которые далеко не исчерпывают все возможные виды парабол):

При этом:

  • если коэффициент a > 0, в функции y = ax2 + bx + c, то ветви параболы направлены вверх;
  • если же a < 0, то ветви параболы направлены вниз.

Координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины (p – на рисунках выше) параболы (или точка в которой квадратный трехчлен достигает своего наибольшего или наименьшего значения):

Игрек вершины (q – на рисунках выше) параболы или максимальное, если ветви параболы направлены вниз (a < 0), либо минимальное, если ветви параболы направлены вверх (a > 0), значение квадратного трехчлена:

Графики других функций

К оглавлению…

Степенной функцией называют функцию, заданную формулой:

Приведем несколько примеров графиков степенных функций:

Обратно пропорциональной зависимостью называют функцию, заданную формулой:

В зависимости от знака числа k график обратно пропорциональной зависимости может иметь два принципиальных варианта:

Асимптота – это линия, к которой линия графика функции бесконечно близко приближается, но не пересекает. Асимптотами для графиков обратной пропорциональности приведенных на рисунке выше являются оси координат, к которым график функции бесконечно близко приближается, но не пересекает их.

Показательной функцией с основанием а называют функцию, заданную формулой:

В зависимости от того больше или меньше единицы число a график показательной функции может иметь два принципиальных варианта (приведем также примеры, см. ниже):

Логарифмической функцией называют функцию, заданную формулой:

В зависимости от того больше или меньше единицы число a график логарифмической функции может иметь два принципиальных варианта:

График функции y = |x| выглядит следующим образом:

Графики периодических (тригонометрических) функций

К оглавлению…

Функция у = f(x) называется периодической, если существует такое, неравное нулю, число Т, что f(x + Т) = f(x), для любого х из области определения функции f(x). Если функция f(x) является периодической с периодом T, то функция:

где: A, k, b – постоянные числа, причем k не равно нулю, также периодическая с периодом T1, который определяется формулой:

Большинство примеров периодических функций – это тригонометрические функции. Приведем графики основных тригонометрических функций. На следующем рисунке изображена часть графика функции y = sinx (весь график неограниченно продолжается влево и вправо), график функции y = sinx называют синусоидой:

График функции y = cosx называется косинусоидой. Этот график изображен на следующем рисунке. Так как и график синуса он бесконечно продолжается вдоль оси ОХ влево и вправо:

График функции y = tgx называют тангенсоидой. Этот график изображен на следующем рисунке. Как и графики других периодических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

Ну и наконец, график функции y = ctgx называется котангенсоидой. Этот график изображен на следующем рисунке. Как и графики других периодических и тригонометрических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

Источник: https://educon.by/index.php/materials/math/funkcii

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.